计算机视觉实战项目4(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A*路径规划+单目测距与测速+行人车辆计数等)

往期热门项目回顾:

计算机视觉项目大集合

改进的yolo目标检测-测距测速

路径规划算法

图像去雨去雾+目标检测+测距项目

交通标志识别项目

yolo系列-重磅yolov9界面-最新的yolo

姿态识别-3d姿态识别

深度学习小白学习路线

AI健身教练-引体向上-俯卧撑计数代码-仰卧起坐姿态估计-康复训练姿态识别-姿态矫正(附代码)

yolov8双目测距-yolov8+sgbm(原理+代码)

yolov5单目测距+速度测量+目标跟踪(算法介绍和代码

YOLOv8界面-目标检测+语义分割+追踪+姿态识别(姿态估计)+界面DeepSort/ByteTrack-PyQt-GUI

二维码识别系统(代码+教程)-计算机视觉项目实战

行人3d目标检测-车辆3d目标检测-3d目标检测(代码+教程)

低光照图像增强算法-图像增强(代码+教程)

动物关键点数据集-yolov8 pose动物关键点识别-动物姿态估计-keypoints(代码+数据集)

改进的yolov10 deepsort目标跟踪(yolo改进+最新算法+附代码和教程)

yolov8安卓部署+QT+NCNN(附代码+教程)

单目测距(yolo目标检测+标定+测距代码)

基于opencv的车牌检测和识别系统(代码+教程)

yolov8道路缺陷检测-道路坑洞检测-道路裂缝检测

yolov8旋转目标检测之绝缘子检测-从数据加载到模型训练、部署

yolov5足球运动分析-速度分析-足球跟踪

yolov8机械臂关键点检测模型部署+教程+代码+数据集+工业应用

yolov8多任务模型-目标检测+车道线检测+可行驶区域检测-yolo多检测头代码+教程

基于YOLOv5的教室人数检测统计系统

智慧课堂学生行为数据集

自动泊车系统中的YOLOv8 pose关键点车位线检测

基于yolov8的红绿灯目标检测训练与Streamlit部署(代码+教程)

改进YOLO的群养猪行为识别算法研究及部署(小程序-网站平台-pyqt)

车辆跟踪及测距

  • 该项目一个基于深度学习和目标跟踪算法的项目,主要用于实现视频中的目标检测和跟踪。
  • 该项目使用了 YOLOv5目标检测算法和 DeepSORT
    目标跟踪算法,以及一些辅助工具和库,可以帮助用户快速地在本地或者云端上实现视频目标检测和跟踪!

教程博客_传送门链接------->单目测距和跟踪
在这里插入图片描述

yolov5 deepsort 行人/车辆(检测 +计数+跟踪+测距+测速)

  • 实现了局域的出/入 分别计数。
  • 显示检测类别,ID数量。
  • 默认是 南/北 方向检测,若要检测不同位置和方向,需要加以修改
  • 可在 count_car/traffic.py 点击运行
  • 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车、船。
  • 检测类别可在 objdetector.py 文件修改。

原文链接:https://blog.csdn.net/ALiLiLiYa/article/details/131819630
在这里插入图片描述

目标跟踪

  • YOLOv5是一种流行的目标检测算法,它是YOLO系列算法的最新版本。
  • YOLOv5采用了一种新的架构,可以在保持高准确性的同时提高检测速度。
  • 在本文中,我们将介绍如何使用YOLOv5_deepsort算法来进行船舶跟踪和测距。

教程博客_传送门链接------->目标跟踪
在这里插入图片描述

车道线识别

  • 本文主要讲述项目集成:从车道线识别、测距、到追踪,集各种流行模型于一体!
  • 不讲原理,直接上干货!
  • 把下文环境配置学会,受益终生!
  • 各大项目皆适用

教程博客_传送门链接------->车道线识别+目标检测
看下本项目的效果:
在这里插入图片描述

语义分割

  • MMsegmentation是一个基于PyTorch的图像分割工具库,
  • 它提供了多种分割算法的实现,包括语义分割、实例分割、轮廓分割等。
  • MMsegmentation的目标是提供一个易于使用、高效、灵活且可扩展的平台,以便开发者可以轻松地使用最先进的分割算法进行研究和开发

教程博客_传送门链接------->语义分割

在这里插入图片描述

姿态识别

  • 体姿态估计是计算机视觉中的一项重要任务
  • 具有各种应用,例如动作识别、人机交互和监控。
  • 近年来,基于深度学习的方法在人体姿态估计方面取得了显著的性能。
  • 其中最流行的深度学习方法之一是YOLOv7姿态估计模型


程博客_传送门链接------->:姿态识别https://blog.csdn.net/ALiLiLiYa/article/details/129482358
在这里插入图片描述

图像分类

  • 在本教程中,您将学习如何使用迁移学习训练卷积神经网络以进行图像分类。您可以在 cs231n 上阅读有关迁移学习的更多信息。
  • 本文主要目的是教会你如何自己搭建分类模型,耐心看完,相信会有很大收获。废话不多说,直切主题…
  • 首先们要知道深度学习大都包含了下面几个方面:

1.加载(处理)数据
2.网络搭建
3.损失函数(模型优化)
4 模型训练和保存

  • 把握好这些主要内容和流程,基本上对分类模型就大致有了个概念。

**教程博客_传送门链接--------->:图像分类
在这里插入图片描述

交通标志识别

  1. 项目是一个基于 OpenCV 的交通标志检测和分类系统
  2. 可以在视频中实时检测和分类交通标志。检测阶段使用图像处理技术,
  3. 在每个视频帧上创建轮廓并找出其中的所有椭圆或圆形。它们被标记为交通标志的候选项。

教程博客_传送门链接------->交通标志识别
在这里插入图片描述

表情识别、人脸识别

  • 面部情绪识别(FER)是指根据面部表情识别和分类人类情绪的过程。
  • 通过分析面部特征和模式,机器可以对一个人的情绪状态作出有根据的推断。
  • 这个面部识别的子领域高度跨学科,涉及计算机视觉、机器学习和心理学等领域的知识

教程博客_传送门链接------->表情识别
在这里插入图片描述

疲劳检测

  • 瞌睡经常发生在汽车行驶的过程中
  • 该行为害人害己,如果有一套能识别瞌睡的系统,那么无疑该系统意义重大!

教程博客_传送门链接------->疲劳检测
在这里插入图片描述

车牌识别

  • 用python3+opencv3做的中国车牌识别
  • 包括算法和客户端界面,只有2个文件,一个是界面代码,一个是算法代码
  • 点击即可出结果,方便易用!

链接:车牌识别
大致的UI界面如下,点击输入图片,右侧即可出现结果!
在这里插入图片描述

代码

额外说明:算法代码只有500行,测试中发现,车牌定位算法的参数受图像分辨率、色偏、车距影响。

--->qq 1309399183----------<代码交流
	def from_pic(self):
		self.thread_run = False
		self.pic_path = askopenfilename(title="选择识别图片", filetypes=[("jpg图片", "*.jpg")])
		if self.pic_path:
			img_bgr = predict.imreadex(self.pic_path)
			self.imgtk = self.get_imgtk(img_bgr)
			self.image_ctl.configure(image=self.imgtk)
			resize_rates = (1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4)
			for resize_rate in resize_rates:
				print("resize_rate:", resize_rate)
				r, roi, color = self.predictor.predict(img_bgr, resize_rate)
				if r:
					break
			#r, roi, color = self.predictor.predict(img_bgr, 1)
			self.show_roi(r, roi, color)

图像去雾去雨+目标检测+单目测距结合

  • 0.0实时感知本车周围物体的距离对高级驾驶辅助系统具有重要意义,当判定物体与本车距离小于安全距离时便采取主动刹车等安全辅助功,
  • 0.1这将进一步提升汽车的安全性能并减少碰撞的发生。上一章本文完成了目标检测任务,接下来需要对检测出来的物体进行距离测量。
  • 1.首先描述并分析了相机成像模型,推导了图像的像素坐标系与世界坐标系之间的关系。
  • 2.其次,利用软件标定来获取相机内外参数并改进了测距目标点的选取。
  • 3.最后利用测距模型完成距离的测量并对采集到的图像进行仿真分析和方法验证。
    传送门链接------------->:单目测距
    在这里插入图片描述

代码


        for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Warmup
        if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
            old_img_b = img.shape[0]
            old_img_h = img.shape[2]
            old_img_w = img.shape[3]
            for i in range(3):
                model(img, augment=opt.augment)[0]

        # Inference
        t1 = time_synchronized()
        with torch.no_grad():   # Calculating gradients would cause a GPU memory leak
            pred = model(img, augment=opt.augment)[0]
        t2 = time_synchronized()
         distance=object_point_world_position(u, v, h, w, out_mat, in_mat):

路径规划

本节针对越野场景路径规划问题,采用栅格法建立障碍物、威胁物和越野道路模型,模拟真实的越野环境场景。

  • 引入方向变化惩罚和局部区域复杂度惩罚来优化A算法,使算法规划出的路径更平滑,算法效率更高效。

  • 采用改进 Floyd 算法对路径进行双向平滑,并且进行了防碰撞处理,来确保规划出路径的安全可靠性。

  • 仿真结果表明,所改进的 A算法与传统算法相比较,效率提高了 30%,拐点数减少了4
    倍,所提算法能够在越野环境多重因素综合影响以及不同车辆性能和任务的要求下快速的规划出安全的路径。
    传送门链接---------------->:A star
    在这里插入图片描述

代码

###############创建A-Star类############
class AStar:
    
    # 描述AStar算法中的节点数据
    class Node:  
        #初始化
        def __init__(self, point, startPoint,endPoint, g=0,w=1,p=1):
            self.point = point  # 自己的坐标
            self.father = None  # 父节点
            self.g = g       # g值,g值在用到的时候会重新算
            
            # 计算h值,采用曼哈顿距离
            #self.h = (abs(endPoint.x - point.x) + abs(endPoint.y - point.y)) * 10  
            
            #采用欧几里得距离
            #self.h = math.pow((math.pow((endPoint.x - point.x),2) + math.pow((endPoint.y - point.y),2)),0.5)*10
            
            #采用对角距离
            pp=(1-p)+0.2*math.exp((math.pow((math.pow((endPoint.x - point.x),2) + math.pow((endPoint.y - point.y),2)),0.5))/(math.pow((math.pow((endPoint.x - startPoint.x),2) + math.pow((endPoint.y - startPoint.y),2)),0.5)))
            Diagonal_step = min((endPoint.x - point.x),(endPoint.y - point.y))
            straight_step = (abs(endPoint.x - point.x) + abs(endPoint.y - point.y)) - 2*Diagonal_step
            self.h  =(straight_step + math.pow(2,0.5)*Diagonal_step)*10*pp
            #print(pp)


            
    #初始化A-start
    def __init__(self, map2d, startPoint, endPoint, passTag=1.0):#map2d地图信息,startPoint起点, endPoint终点, passTag=1.0为不可行驶区域

        # 开启表
        self.openList = []
        # 关闭表
        self.closeList = []
        # 寻路地图
        self.map2d = map2d
        # 起点终点
        if isinstance(startPoint, Point) and isinstance(endPoint, Point):
            self.startPoint = startPoint
            self.endPoint = endPoint
        else:
            self.startPoint = Point(*startPoint)
            self.endPoint = Point(*endPoint)
 
        # 不可行走标记
        self.passTag = passTag
 
    def getMinNode(self):
        """
        获得openlist中F值最小的节点
        :return: Node
        """
        currentNode = self.openList[0]
        for node in self.openList:
            if node.g + node.h < currentNode.g + currentNode.h:
                currentNode = node
        return currentNode#返回最小代价的点
 

停车位检测

  • 基于深度学习的鱼眼图像中的停车点检测和分类是为二维物体检测而开发的。我们的工作增强了预测关键点和方框的能力。这在许多场景中很有用,因为对象不能用右上的矩形“紧密”表示。
  • 一个这样的例子,道路上的任何标记,由于透视效果,在现实世界中的对象矩形不会在图像中保持矩形,所以关键点检测显得格外重要。鱼眼图像还呈现了观察到这种现象的另一种场景,由于鱼眼宽广的视角,可以扑捉更多画像

链接:停车位检测

在这里插入图片描述

代码

#全部代码可加qq1309399183
def train():
    #parses command line args
    args = parse_args()

    #parses args from file
    if args.config_file is not None:
        cfg_from_file(args.config_file)

    if (args.FIX_MODEL_CHECKPOINT):
      args.FIX_MODEL_CHECKPOINT = args.FIX_MODEL_CHECKPOINT.replace(" ", "")
      args.FIX_MODEL_CHECKPOINT = args.FIX_MODEL_CHECKPOINT.replace("=", "")
      cfg.RESUME_CHECKPOINT = args.FIX_MODEL_CHECKPOINT
      cfg.CHECK_PREVIOUS = False
      if (os.path.exists(cfg.RESUME_CHECKPOINT) == False):
          print('Exiting the process as asked model for resuming is not found')
          exit()

    if (args.RESUME_CHECKPOINT):
      cfg.RESUME_CHECKPOINT = args.RESUME_CHECKPOINT

    if (args.LOG_DIR):
      cfg.EXP_DIR = args.LOG_DIR

    cfg.LOG_DIR = cfg.EXP_DIR

    if (args.PHASE):
      cfg.PHASE = []
      cfg.PHASE.append(args.PHASE)

    if (args.EVAL_METHOD):
      cfg.DATASET.EVAL_METHOD = args.EVAL_METHOD

    #for backward compatibility
    if cfg.DATASET.DATASET == 'psd':
      cfg.DATASET.DATASET = 'tiod'

    if cfg.DATASET.BGR_OR_RGB == True:
        #cfg.DATASET.PIXEL_MEANS = (123.68, 116.78, 103.94)
        #cfg.DATASET.PIXEL_MEANS = (123, 117, 104)
        cfg.DATASET.PIXEL_MEANS = (128.0, 128.0, 128.0) # simpler mean subtraction to keep data in int8 after mean subtraction

    print("cfg: ", cfg)

    for phase in cfg.PHASE:
      cfg_dir = cfg.LOG_DIR + '/' + phase + '_cfg/'
      os.makedirs(os.path.dirname(cfg_dir), exist_ok=True)
      shutil.copy(args.config_file, cfg_dir)

    # to making every run consistent # TII
    np.random.seed(100)
    torch.manual_seed(100)
    torch.cuda.manual_seed(100)
    random.seed(100)
    torch.cuda.manual_seed_all(999)
    torch.backends.cudnn.enabled = False

    train_model()

if __name__ == '__main__':
    train()

图像雾去雨与目标检测

  • 针对不同的天气则采取不同的图像前处理方法来提升图像质量。
  • 雾天天气 时,针对当下求解的透射率会导致去雾结果出现光晕、伪影现象,本文采用加权最小二乘法细化透射率透。
  • 针对四叉树法得到的大气光值不精确的问题,改进四叉树法来解决上述问题。将上述得到的透射率和大气光值代入大气散射模型完成去雾处理;
  • 在图像处理后加入目标检测,提高了目标检测精度以及目标数量。

下图展现了雾天处理后的结果
图第一列为雾霾图像,第二列为没有加入图像处理的目标检测结果图,第三列为去雾后的目标检测结果图。

在这里插入图片描述

无人机检测

  • 反无人机目标检测与跟踪的意义在于应对无人机在现实世界中可能带来的潜在威胁,并保障空域安全。以下是这方面的几个重要意义:
  • 空域安全:无人机的广泛应用给空域安全带来了新的挑战。通过开展反无人机目标检测与跟踪研究,可以及时发现和追踪潜在的无人机入侵行为,确保空域的安全和秩序。
  • 防范恶意活动:无人机技术的快速发展也为一些恶意活动提供了新的工具和手段,如无人机进行窥探、非法监听、破坏等。反无人机目标检测与跟踪的研究可以帮助及时发现和阻止这些恶意活动,维护社会的稳定和安全


传送门链接-------------->:无人机检测

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/884087.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

网站设计中安全方面都需要有哪些考虑

网站设计中的安全性是一个多方面的问题&#xff0c;需要从多个角度进行考虑和实施。以下是一些关键的安全考虑因素&#xff1a; 数据加密&#xff1a; 使用SSL&#xff08;安全套接字层&#xff09;证书来建立加密连接&#xff0c;确保数据在传输过程中不被截获。定期更新SSL证…

保障电气安全的电气火灾监控系统主要组成有哪些?

电气火灾是什么&#xff1f; 电气火灾一般是指由于电气线路、用电设备、器具以及供配电设备出现故障性释放的热能&#xff1a;如高温、电弧、电火花以及非故障性释放的能量&#xff1b;如电热器具的炽热表面&#xff0c;在具备燃烧条件下引燃本体或其他可燃物而造成的火灾&…

动态规划入门题目->使用最小费用爬楼梯

1.题目&#xff1a; 2.解析&#xff1a; 做题模式&#xff1a; 步骤一&#xff1a;找状态转移方程 步骤二&#xff1a;初始化 步三&#xff1a;填表 步骤四&#xff1a;返回-> dp[n] dp[i]表示到达 i 位置最小花费 逻辑&#xff1a;要爬到楼顶先找到 i 位置 &#xff0c; 要…

如何在谷歌浏览器上玩大型多人在线游戏

在如今的数字时代&#xff0c;谷歌浏览器已经成为了许多人上网冲浪的首选工具。除了浏览网页、观看视频之外&#xff0c;你还可以在谷歌浏览器上畅玩各种大型多人在线游戏。本文将为你详细介绍如何在谷歌浏览器上玩大型多人在线游戏的步骤。 &#xff08;本文由https://chrome…

PTH原理 补丁+工具

顺着《域渗透攻防指南》4.9的总结记录下。 0x00 PTH简单说明 PTH在内网渗透中用于横向移动。由于NTLM && Kerberos都是采用用户密码的NTLM Hash&#xff0c;所以我们不需要非得拿用户明文口令&#xff0c;拿到hash一样可以。 拿到hash后&#xff0c;可以撞hash&…

【深度学习】03-神经网络01-4 神经网络的pytorch搭建和参数计算

# 计算模型参数,查看模型结构,我们要查看有多少参数&#xff0c;需要先安装包 pip install torchsummary import torch import torch.nn as nn from torchsummary import summary # 导入 summary 函数&#xff0c;用于计算模型参数和查看模型结构# 创建神经网络模型类 class Mo…

nginx+php+postgresql搭建漏洞靶场

经过我多番查找,最终得出一个结论,dvwa暂时不支持 postgresql 本文给大家提供一个思路,千万不要轻易模仿 更新系统包列表 首先,打开终端并更新你的系统包列表: sudo apt updatesudo apt upgrade -y安装必要的软件包 安装Nginx、PHP、PostgreSQL以及一些必要的PHP扩展:…

基于BeagleBone Black的网页LED控制功能(flask+gpiod)

目录 项目介绍硬件介绍项目设计开发环境功能实现控制LED外设构建Webserver 功能展示项目总结 &#x1f449; 【Funpack3-5】基于BeagleBone Black的网页LED控制功能 &#x1f449; Github: EmbeddedCamerata/BBB_led_flask_web_control 项目介绍 基于 BeagleBoard Black 开发板…

搜索引擎onesearch3实现解释和升级到Elasticsearch v8系列(四)-搜索

搜索 搜索内容比较多&#xff0c;onesearch分成两部分&#xff0c;第一部分&#xff0c;Query构建&#xff0c;其中包括搜索词设置&#xff0c;设置返回字段&#xff0c;filter&#xff0c;高亮&#xff1b;第二部分分页和排序。第一部分是映射引擎负责&#xff0c;映射通用表…

HAL+M4学习记录_2

一、Boot配置 内存地址是固定的&#xff0c;代码从0x0000 0000开始&#xff0c;而数据从0x2000 0000开始&#xff0c;F4支持三种不同的boot模式 复位芯片时&#xff0c;在SYSCLK的第4个上升沿BOOT引脚值被锁存&#xff0c;STM32F407通过此时BOOT[1:0]引脚值选择Boot模式 BOOT1…

深度学习(入门)03:监督学习

1、监督学习简介 监督学习&#xff08;Supervised Learning&#xff09;是一种重要的机器学习方法&#xff0c;它的目标是通过“已知输入特征”来预测对应的标签。在监督学习中&#xff0c;每一个“特征-标签”对被称为样本&#xff08;example&#xff09;&#xff0c;这些样…

物联网行业中模组的AT指令详解以及使用

01 概述 AT 命令&#xff08;AT Commands&#xff09;最早是由发明拨号调制解调器&#xff08;MODEM&#xff09;的贺氏公司&#xff08;Hayes&#xff09;为了控制 MODEM 而发明的控制协议。后来随着网络带宽的升级&#xff0c;速度很低的拨号 MODEM 基本退出一般使用市场&am…

【含文档】基于Springboot+Vue的高校师资管理系统(含源码+数据库+lw)

1.开发环境 开发系统:Windows10/11 架构模式:MVC/前后端分离 JDK版本: Java JDK1.8 开发工具:IDEA 数据库版本: mysql5.7或8.0 数据库可视化工具: navicat 服务器: SpringBoot自带 apache tomcat 主要技术: Java,Springboot,mybatis,mysql,vue 2.视频演示地址 3.功能 系统定…

深入理解 `torch.nn.Linear`:维度变换的过程详解与实践(附图、公式、代码)

在深度学习中&#xff0c;线性变换是最基础的操作之一。PyTorch 提供了 torch.nn.Linear 模块&#xff0c;用来实现全连接层&#xff08;Fully Connected Layer&#xff09;。在使用时&#xff0c;理解维度如何从输入映射到输出&#xff0c;并掌握其具体的变换过程&#xff0c;…

宠物空气净化器有必要买吗?希喂、霍尼韦尔和352哪款更推荐?

国庆假终于要来了&#xff0c;对于我这个上班族而言&#xff0c;除了春节假期最期待的就是这个国庆假&#xff0c;毕竟假期这么长&#xff0c;家里还有一只小猫咪&#xff0c;一直都没时间陪它&#xff0c;终于给我找到时间带它会老家玩一趟了。 我跟我妈说的时候&#xff0c;…

时序必读论文13|ICLR24 “又好又快”的线性SOTA时序模型FITS

论文标题&#xff1a;FITS: Modeling Time Series with 10k Parameters 开源代码&#xff1a;https://anonymous.4open.science/r/FITS/README.md 前言 FITS&#xff08;Frequency Interpolation Time Series Analysis Baseline&#xff09;这篇文章发表于ICLR2024&#xff…

鸿蒙开发(NEXT/API 12)【硬件(Pen Kit)】手写笔服务

Pen Kit&#xff08;手写笔服务&#xff09;是华为提供的一套手写套件&#xff0c;提供笔刷效果、笔迹编辑、报点预测、一笔成形和全局取色的功能。手写笔服务可以为产品带来优质手写体验&#xff0c;为您创造更多的手写应用场景。 目前Pen Kit提供了四种能力&#xff1a;手写…

C++入门day5-面向对象编程(终)

C入门day4-面向对象编程&#xff08;下&#xff09;-CSDN博客 本节是我们面向对象内容的最终篇章&#xff0c;不是说我们的C就学到这里。如果有一些面向对象的基础知识没有讲到&#xff0c;后面会发布在知识点补充专栏&#xff0c;全都是干货满满的。 https://blog.csdn.net/u…

2024-09-27 buildroot C和语言将 中文的GBK编码转换为 UTF-8 的代码, printf 显示出来,使用 iconv 库去实现。

一、GBK 的英文全称是 "Guobiao Kuozhan"&#xff0c;意为 "National Standard Extended"。它是对 GB2312 编码的扩展&#xff0c;用于表示更多汉字和符号 GBK&#xff08;国标扩展汉字编码&#xff09;是一种用于简体中文和繁体中文字符的编码方式&#x…

Python 从入门到实战30(高级文件的操作)

我们的目标是&#xff1a;通过这一套资料学习下来&#xff0c;通过熟练掌握python基础&#xff0c;然后结合经典实例、实践相结合&#xff0c;使我们完全掌握python&#xff0c;并做到独立完成项目开发的能力。 上篇文章我们讨论了操作目录的相关知识。今天我们将学习一下高级文…